线性代数(七) 矩阵分析

前言

从性线变换我们得出,矩阵和函数是密不可分的。如何用函数的思维来分析矩阵。

矩阵的序列

在这里插入图片描述
通过这个定义我们就定义了矩阵序列的收敛性
在这里插入图片描述
研究矩阵序列收敛性的常用方法,是用《常见向量范数和矩阵范数》来研究矩阵序列的极限。

长度是范数的一个特例。事实上,Frobenius范数对应的就是长度。我们在线性空间中定义内积时,就是把这三条性质作为公理来定义内积的
在这里插入图片描述

收敛矩阵

在矩阵序列中,最常见的是由一个方阵的幂构成的序列,关于这样的矩阵序列有如下概念和收敛定理:
在这里插入图片描述
r(A)是谱半径是一个矩阵的特征值绝对值中的最大值,用于描述矩阵的特征值的尺度大小。

矩阵级数

在这里插入图片描述
在这里插入图片描述

矩阵幂级数

在这里插入图片描述

  1. 根据幂级数收敛半径定理求出收敛半径r
  2. 根据《常见向量范数和矩阵范数》将矩阵A量化,看否在收敛区间中

在这里插入图片描述

  • a k = k = > r = lim ⁡ k → ∞ | a k + 1 a k | = | k + 1 k | = 1 a_k= k => r= \lim\limits_{k \to \infty} |\dfrac{a_{k+1}}{a_k}|=|\dfrac{{k+1}}{k}|= 1 ak=k=>r=klimakak+1=kk+1=1
  • 由范式2得到 p ( A ) = 5 6 p(A)=\dfrac{5}{6} p(A)=65

Neumann级数

在这里插入图片描述
在这里插入图片描述

  • 注1:假设E-A不可逆,那么E-A有0特征值,A的特征值为1。而A的谱半径小于1,矛盾,故E-A可逆
  • 注2:A的谱半径小于1,由定理3可知A为收敛矩阵。那么 A k + 1 A^{k+1} Ak+1 就趋近于0(k趋于无穷)
    在这里插入图片描述

矩阵函数

在这里插入图片描述

矩阵函数的计算

常用的有以下几种方法

待定系数法
  • 求矩阵A的特征多项式 ∣ λ I − A ∣ |\lambda I - A| λIA
  • 利用Hamilton-Cayley定理,求出A的一次性化零多项式 ψ ( A ) = 0 \psi(A)=0 ψ(A)=0在这里插入图片描述 - 求解 f ( A ) f(A) f(A)多项式在这里插入图片描述在这里插入图片描述
  • A = λ ,即 ψ ( A ) = f ( A ) A=\lambda, 即\psi(A)=f(A) A=λ,即ψ(A)=f(A)在这里插入图片描述
  • sin的导注是cos
  • e x e^x ex的导数是它本身的导数,因此, e ( 2 t ) 的导数是 2 e ( 2 t ) e^(2t) 的导数是 2e^(2t) e(2t)的导数是2e(2t)
利用相似对角化在这里插入图片描述
利用Jordan标准形在这里插入图片描述

主要参考

《常见向量范数和矩阵范数》
《矩阵分析》
《7.2.3幂级数收敛半径定理》
《矩阵序列与矩阵级数》
《矩阵函数的常见求法》文章来源地址https://www.uudwc.com/A/20j4N/

原文地址:https://blog.csdn.net/y3over/article/details/132737281

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请联系站长进行投诉反馈,一经查实,立即删除!

h
上一篇 2023年10月21日 15:01
[论文笔记]UNILM
下一篇 2023年10月21日 17:31